BLOOMS OF *Pyrodinium bahamense* var. *compressum* AND ROCK OYSTER TOXICITY IN COSTA CHICA, GUERRERO, MEXICO

Gárate-Lizárraga, I.¹, B. Pérez-Cruz², J.A. Díaz-Ortiz², M.A. Alarcón-Tacuba², M.A. Alarcón-Romero², L.A. Chávez-Almazán², J.L. García-Barbosa² & E. Diego-Valderrama²

¹Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR), Avenida Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico. ²Laboratorio Estatal de Salud Pública “Dr. Galo Soberón y Parra”, Boulevard Vicente Guerrero, Esq. Juan R. Escudero, Ciudad Renacimiento, Acapulco, Guerrero, México. Email: igatorate@ipn.mx; lesp_guerrero@prodigy.net.mx

ABSTRACT. Blooms of *Pyrodinium bahamense* var. *compressum* were detected from July to December 2010 in Costa Chica, Guerrero. To estimate the cell abundance of this dinoflagellate, phytoplankton samples were collected from 7 July to 9 December 2010 at five sampling sites. Wild rock oysters and specimens from fishing cooperatives were only collected during November-December 2010. Abundance of *P. bahamense* var. *compressum* ranged from < 1000 to 194000 cells L⁻¹ in the first three samplings performed in July. Low densities (< 9000 cells L⁻¹) were observed at the end of November and December. Rock oyster toxicity from the fishing areas ranged from 46.24 to 788.85 μg STXeq 100 g⁻¹. Rock oyster samples collected in the fishing cooperatives had toxicity from 52.2 to 440.88 μg STXeq 100 g⁻¹. Although rock oysters were collected at the end of the blooms, their toxicity could be associated to this dinoflagellate both during this period and during previous blooms that occurred from on July-August in the study area.

Keywords: Algal bloom, *Pyrodinium bahamense* var. *compressum*, rock oyster, shellfish toxicity

INTRODUCTION

The frequency of occurrence of algal blooms appears to have increased in recent decades. Likewise, in Mexico, an important number of algal blooms have also been recorded for the last three decades. Microalgae blooms are frequent and periodic throughout the year along the Pacific coast of Mexico (Cortés-Altamirano *et al.*, 1995; Figueroa-Torres & Zepeda-Esquível, 2001; Gárate-Lizárraga *et al.*, 2001; 2008; 2009; Cortés-Altamirano & Alonso-Rodríguez, 1997; Díaz-Ortiz *et al.*, 2010; Gárate-Lizárraga & González Armas, 2011; Quijano-Scheggia *et al.*, 2011). Most algae blooms are innocuous; however, some blooming-species can be harmful or toxic. Their toxicity reaches several levels of the food chain killing fish and other marine life, thus affecting fishing activities. Besides, they cause illness to people who consume marine fish and shellfish affected by the toxic algae.

Harmful algae blooms are common events along the coasts of Guerrero (Lioe±a-Durán *et al.*, 1999; Ramírez-Camarena *et al.*, 2004; Gárate-Lizárraga *et al.*, 2008; 2009; 2011; Díaz-Ortiz *et al.*, 2010), and since 1991, the Public Health Laboratory “Dr. Galo Soberón y Parra” has successfully monitored for species causing red tides and paralytic toxin-producing species along the central and southwestern Mexican coast, including toxicity in marine bivalves. The main toxic species responsible for red tides in...
this area are the dinoflagellates Cochlodinium polykrikoides, Gymnodinium catenatum, and Pyrodinium bahamense var. compressum. Sometimes, these three species occur simultaneously along the coasts (Gárate-Lizárraga et al., 2011). P. bahamense var. compressum is broadly distributed along the Mexican Pacific coastline, while P. bahamense var. bahamense has an uncertain distribution (Gárate-Lizárraga & González-Armas, 2011). P. bahamense var. compressum is the main species responsible causing important PSP outbreaks in this area (Saldate-Castañeda et al., 1991; Orellana-Cepeda et al., 1998; Gárate-Lizárraga et al., 2011). Few red tide events and paralytic shellfish toxicity of this dinoflagellate have been reported elsewhere off Bahía de Acapulco (Cortés-Altamirano et al., 1993; Orellana-Cepeda et al., 1998; Ramírez-Camarena et al., 2004). Recently, Gárate-Lizárraga et al. (2011; 2012) reported several PSP incidents in 2010 in Costa Grande (Zihuatanejo) on the northern part of Guerrero. Here, we report for the first time the presence of blooms of P. bahamense var. compressum and toxicity in the rock oyster (Crassostrea iridescens Hanley, 1854) in Costa Chica, Guerrero.

MATERIAL AND METHODS

The locality known as Costa Chica is an area along the south coast of the state of Guerrero, Mexico, extending from south of Acapulco to the Oaxaca border. As part of a continuing toxic microalgae monitoring program, phytoplankton samples were collected from 7 July to 9 December 2010 at several shellfish catching sites in Costa Chica (Sampling stations 1-9, Fig. 1; Table 1). During the samplings done on 23 November and 8 December, around 100 g of rock oyster meat were collected to measure shellfish toxicity. Also, to measure the quality of products sold in commercial markets, oyster samples were obtained from five fishing cooperatives (Cooperativas pesqueras; sampling stations 6-10; Table 2).

Blooms samples were collected with a 1 m-tube sampler and were fixed with Lugol solution. One mL of each phytoplankton sample was placed in a Sedgwick-Rafter chamber for cell counting under an inverted microscope (Olympus Axiovert 40 C) and scanned at 200× with a digital camera (Cannon Power Shot A64Q). SEM images were obtained with a JEOL JSM-5600 electron microscope operating at 10 kV and 8 mm working distance. Shellfish toxicity was determined by standard mouse bioassay (AOAC International, 1995). Preparation of an extract obtained from 100 g of whole shellfish tissue dissolved in boiling acid (0.1 N HCl, 100 mL) was injected (0.5 g tissue equivalent) into each 20 g mouse (Díaz-Ortíz et al., 2010). Satellite data of sea surface temperature (SST) in a sampling at the study area were obtained by Moderate Resolution Imaging (MODIS-OCEAN) satellite database.

RESULTS AND DISCUSSION

Sea surface temperature ranged from 27.6 °C (February) to 30.5 °C (July) and showed a clear marked seasonal pattern (Fig. 2). Blooms of P. bahamense var. compressum occurred during the highest summer temperatures recorded in July (30.5 °C), indicating its subtropical and tropical nature. Pyrodinium bahamense

Figure 1. Location of sampling stations (1–10) in the southern part of the Costa Chica, Guerrero coastline surveyed from July 7 through December 15, 2010.
Pyrodinium bahamense var. compressum was the only toxic species found in the samples collected at five sites on 7 July to 9 December 2010 in Costa Chica, Guerrero (Table 1). This variety occurred as individual cells and two-cell and four-cell chains (Figs. 3–7). Cells are about 34–62 µm long and 40–54 µm wide (n = 30). Abundance of *P. bahamense* var. *compressum* ranged from 16000 to 194000 cells L\(^{-1}\) in the first three samplings performed in July. Its densities diminished at the end of July and were not observed during September and October. Low cell densities were observed at the end of November and December (Table 1). Densities of *P. bahamense* var. *compressum* found in this study lie in the range reported by other authors (Díaz-Ortíz et al., 2010; Gárate-Lizárraga et al., 2011, 2012; Meave del Castillo et al., 2012). These authors reported densities from 1000 to 1,462,000 cells L\(^{-1}\).

Wild oyster toxicity ranged from 96.24 to 573.3 µg STXeq 100 g\(^{-1}\) on November 23. An increase of the oyster toxicity was observed on December 3, reaching the highest toxicity value (788.85 µg STXeq 100 g\(^{-1}\)). Two oyster samples showed toxicity values under the limit permissible (80 µg STXeq 100 g\(^{-1}\)) for human consumption (DOF, 2011) and five oyster samples had toxicities that were over 1-9 times the permitted limit (Table 2). Rock oyster samples collected in the fishing cooperatives exhibited toxic levels from 52.2 to 440.88 µg STXeq 100 g\(^{-1}\). Four

### Table 1. Abundance (cells L\(^{-1}\)) of *Pyrodinium bahamense* var. *compressum* from red tides samples collected at 5 georeferenced sites in Costa Chica, Guerrero from July 7 to December 9, 2010.

<table>
<thead>
<tr>
<th>Sampling station number</th>
<th>Sampling sites (geographical coordinates)</th>
<th>Sampling dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Casa de Piedra; Playa Ventura 16° 32’ 04.3” 98° 53’ 48.4”</td>
<td>July 7 83000 52000 25000 3000 4000 &lt; 1000 2000 &lt; 1000 2000</td>
</tr>
<tr>
<td>2</td>
<td>Playa La Picuda 16° 32’ 06.9” 98° 54’ 45.2”</td>
<td>July 9 94000 62000 64000 4000 8000 &lt; 1000 3000 &lt; 1000 9000</td>
</tr>
<tr>
<td>3</td>
<td>Las Salinas; Las Salinas 16° 32’ 42.6” 98° 50’ 45.9”</td>
<td>July 14 July 21 July 27 August 4 November 23 December 2 December 9 108000 16000 194000 8000 4000 &lt; 1000 2000 &lt; 1000 1000</td>
</tr>
<tr>
<td>4</td>
<td>Bahía El Faro; Punta Maldonado 16° 19’ 56.4” 98° 34’ 11.3”</td>
<td>135000 15000 &lt; 1000 12000 1000 &lt; 1000 &lt; 1000 &lt; 1000 2000</td>
</tr>
<tr>
<td>5</td>
<td>El Pico de la Playa; Punta Maldonado 16° 19’ 15.5” 98° 34’ 01.0”</td>
<td>89000 21000 &lt; 1000 22000 2000 &lt; 1000 0 &lt; 1000 1000 1000</td>
</tr>
</tbody>
</table>

**Figure 2.** Annual variation of the average sea surface temperature during 2010 in Bahía de Acapulco.
samples were over 2.5-5.5 times the permitted limit for human consumption. Although rock oysters were collected at the end of the blooms of *P. bahamense* var. *compressum*, their toxicity could be associated to this dinoflagellate not only for the presence of this species but due to the occurrence of previous blooms occurred on July-August in the study area. On the other hand, wild oysters could have accumulated paralytic toxins previously to the collection of phytoplankton samples, because they feed on *P. bahamense* var. *compressum*.

There were no human intoxications during this outbreak because the public health authorities in Acapulco responded rapidly. Nevertheless, along the Zihuatanejo coast in the northern coast of Guerrero, during December 2010, fourteen PSP incidents occurred from consuming raw clams (2541 μg STXeq 100 g⁻¹), victims required hospitalization (Gárate-Lizárraga et al., 2011, 2012). High toxicity found in oysters from the Guerrero coast could result from the high content of STX and neoSTX, the two of the most potent analogues of all the PSP toxins analogues found in marine bivalves from this area (Nuñez-Vázquez et al., 2007; Gárate-Lizárraga et al., 2012).

Two dinoflagellate taxa are the main source of paralytic shellfish toxins along the coasts of Guerrero, *P. bahamense* var. *compressum* and *Gymnodinium catenatum* (Orellana et al., 1998; Ramirez-Camarena et al., 2004; Díaz-Ortíz et al., 2010; Gárate-Lizárraga et al., 2009, 2011, 2012; Meave del Castillo et al., 2012). Because

### Table 2

<table>
<thead>
<tr>
<th>Sampling station number</th>
<th>Date</th>
<th>Sampling sites</th>
<th>Oyster toxicity (μg STXeq 100 g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nov. 23</td>
<td>Casa de Piedra; Playa Ventura</td>
<td>573.3</td>
</tr>
<tr>
<td>3</td>
<td>Nov. 23</td>
<td>Las Salinas, Copala</td>
<td>403.2</td>
</tr>
<tr>
<td>4</td>
<td>Nov. 23</td>
<td>Punta Maldonado; Cuajinicuilapa</td>
<td>96.24</td>
</tr>
<tr>
<td>4</td>
<td>Dec. 03</td>
<td>Punta Maldonado; Cuajinicuilapa</td>
<td>28.86</td>
</tr>
<tr>
<td>1</td>
<td>Dec. 03</td>
<td>Casa de Piedra; Playa Ventura</td>
<td>703.8</td>
</tr>
<tr>
<td>3</td>
<td>Dec. 03</td>
<td>Ojo de Agua; Las Salinas</td>
<td>788.85</td>
</tr>
<tr>
<td>4</td>
<td>Dec. 08</td>
<td>Punta Maldonado; Cuajinicuilapa</td>
<td>46.8</td>
</tr>
<tr>
<td>6</td>
<td>Dec. 08</td>
<td>Copala</td>
<td>440.88</td>
</tr>
<tr>
<td>9</td>
<td>Dec. 08</td>
<td>Marquelia</td>
<td>200.4</td>
</tr>
<tr>
<td>7</td>
<td>Dec. 15</td>
<td>Cooperativa Pesquera “Salinas Hipozahualco”; Copala</td>
<td>52.2</td>
</tr>
<tr>
<td>8</td>
<td>Dec. 15</td>
<td>Cooperativa Pesquera “Baltazar R. Leyva Mancilla”; Copala</td>
<td>329.4</td>
</tr>
<tr>
<td>10</td>
<td>Dec. 15</td>
<td>Cooperativa Pesquera Marquelia</td>
<td>320.4</td>
</tr>
</tbody>
</table>

Table 2. Oyster toxicity determined in 13 collection sites in Costa Chica, Guerrero from 23 November to 15 December 2010.

**Figures 3–7.** Photomicrographs of *Pyrodinium bahamense* var. *compressum* found in Costa Chica, Guerrero, Mexico. Cells observed under light microscope (Figs. 3-5) and scanning electron microscope (Figs. 6-7); 6) ventral view of cell showing the sulcal area and ventral pore (vp); 7) apical view showing the epitheca arrangement, ventral pore (vp) in 4’ plate and the apical plate complex which consists of a comma-shaped canopy and pores.
of the increasing frequency and impacts in the coasts of Guerrero due to blooms of these two species, research performed by the Laboratorio Estatal de Salud Pública “Dr. Galo Soberón y Parra” have been focused on avoiding risks to public health. However, few studies have been conducted to know the causes that can trigger the initiation or development of red tide blooms in this area. At present a more intense program of monitoring of PSP toxin-producing species and toxicity in several species of mollusks along the coasts of Guerrero state is ongoing.

ACKNOWLEDGMENTS

This study was funded by the Programa de Vigilancia Sanitaria Permanente y Sistemático de la Marea Roja en el Litoral del Estado de Guerrero, and the Laboratorio Estatal de Salud Pública “Dr. Galo Soberón y Parra” at Acapulco, Guerrero, and by IPN-CICIMAR Projects: SIP-20121153 and SIP-20130549. Temperature data were kindly provided by F. Aguirre-Bahena (IPN-CICIMAR). We thank J.M. Ehrman for SEM imaging (Mount Allison University, Canada). I.G.L. received support as a COFAPA and EDI fellow.

REFERENCES


