UNUSUAL MORPHOLOGY OF A SPECIMEN OF *Thysanoessa spinifera* HOLMES, 1900 (CRUSTACEA: EUPHAUSIACEA) AT THE OREGON COAST, USA

A male specimen of an euphausiid (15.7 mm total length) with unusual morphology was collected during June 2001 with a MOCNESS net during a Northeast Pacific Long Term Observation Program (LTOP) cruise (Fig. 1a). This specimen did not have a prominent petasma or reproductive characteristics. Therefore, we conclude it was in a juvenile stage. It had the unique morphological feature of a small keel on the dorsal part of the carapace directed forward, a trait not registered in any described euphausiid species (Fig. 1b,c). Additionally, the specimen features three heavy dorsal backward-directed spines in the fourth, fifth, and sixth segments, no lateral carapace spine, and an oval eye shape. These correspond with the original description of juvenile *T. spinifera* (10.5 mm - 19.8 mm total length) (Summers, 1993) and is similar to adults (20 mm to 38 mm total length), except that in adults the eyes are almost spherical (Holmes, 1900) (Fig. 1b,d). However this specimen lacks the typical narrow triangular, long, and very acute rostrum characteristic of *T. spinifera*. Because the body shape is more slender than in a typical *T. spinifera* juvenile and lacks a rostrum, resembling a juvenile *E. pacifica* (Fig. 1f), originally we thought it was a hybrid of *T. spinifera* and *E. pacifica* (Fig. 1a-f). The eye is oval, resembling the eye of a *T. spinifera* juvenile stage (Fig. 2a, b), and is distinct from the usual spherical eye of adults of *T. spinifera* and juveniles and adults of *E. pacifica* (Fig. 2c, d).

The euphausiid *Thysanoessa spinifera* Holmes, 1900 is a neritic species (krill) distributed exclusively along the eastern North Pacific from the southeastern Bering Sea to California. However, during cold years (winter and spring) its distribution can extend as far south as mid-Baja California Peninsula (Brinton, 1962). In this region *T. spinifera* co-dominate in abundance with *Euphausia pacifica* (Gómez-Gutiérrez et al., 2005).
known species (Nemoto, 1966; Baker et al., 1990) and has a few characteristics similar to *E. pacifica*, it is unlikely that it is a new species since the large (bi-weekly) sampling efforts in the region following the Newport Hydrographic line from 1970-1972 (Gómez-Gutiérrez et al., 2005) and 1996-2002 (Feinberg & Peterson, 2003), and the California Cooperative Fishe-
ries Investigation (CalCOFI) program (1959-2003) (Brinton & Townsend, 2003) have not reported any other similar specimen.

Dissection of the specimen revealed no parasites and its appearance is that of a healthy animal even with its unusual small keel on the carapace.

A species may have a range of ecophenotype variability, perhaps reflecting the genotype diversity. Here, we describe morphological variability between (1) populations of the same species, better known as ecophenotypes (Brinton, 1962), and (2) among individuals of the same population as a natural gradient of morphological characteristic of valuable or non-valuable taxonomic purpose.

Brinton (1962, 1975) established the concept of ecophenotypes (or races) in euphausiids, in which a species possess a wide-range of morphological variability recognized in several populations associated with environmental gradients among distinct water masses. Thus, there is a concurrence of morphologically intermediate specimens with geographically intermediate habitats. The best example is Stylocheiron affine Hansen 1910 with five eco-phenotypes in the Pacific Ocean associated to different water masses (Brinton, 1962). Another example is Stylocheiron longicorne G.O. Sars 1883 with three ecophenotypes (short, long, and the Indian Ocean forms), but in this case distribution ranges strongly overlap between the short and long forms, therefore with less obvious association to water masses (Brinton, 1962, 1975). T. spinifera has a relatively restricted distribution range in the neritic region of the Eastern North Pacific (Brinton, 1962), thus it is unlikely that this species distributes in distinct water masses that has led to evolution of distinct ecophenotypes, as observed in species with large distribution ranges (cosmopolitan or circumtropical).

Other species of Euphausiacea seem to have high morphological variability when local populations are examined or even when specimens collected in the same sample are examined (i.e., intrapopulation individual variability). Hansen (1911) reported “remarkable variation” in Euphausia diomedea Ortmann, 1894, indicating that sometimes unusual forms of the typical morphology occur. Several species have considerable variability in characters considered of taxonomic utility in other species, such as the length and shape of the rostrum (Baker et al., 1990). Populations have morphological gradients as part of the complex process of speciation. We cannot specifically explain the aberrant characters seen here, but the lack of the rostrum may be the extreme in

Figure 2. Thysanoessa spinifera rostrum (upper and lateral view) and eye morphology. a) juvenile with unusual morphology; b) typical juvenile, modified from Summers (1993); c) typical adult morphology. d) Euphausia pacifica juvenile rostrum. All photographs are from specimens collected at Oregon.
the natural gradient of length of rostrum of the specimens in the population. An argument against this hypothesis is that *T. spinifera* has not shown a continuum gradient of rostrum length, partially supporting the *T. spinifera - E. pacifica* hybrid hypothesis. Williamson & Rice (1996) and Williamson (2006) proposed that hybridization may occur in zooplanktonic crustaceans to explain the larval transfer and abrupt larval metamorphoses. From a practical point of view, we propose that individuals of *T. spinifera* could also lack the typical prominent rostrum and/or possess a small keel above the cephalothorax.

Considering that the Order Euphausiacea includes only 86 taxonomic valid species (Baker *et al*., 1990; Brinton *et al*., 1999), the description of a new species should represent a notable discovery in the knowledge of these holoplanktonic marine crustaceans. However, morphology variability of any species within its population is a rule rather than an exception as a natural gradient of phenotypic expression of the species or potential hybridization of distinct species. Hybrids should be extremely rare due to pre-cygotic (petasm specific form) and post-cygotic mechanisms to prevent such events. Thus, in regular studies of euphausiid distribution and abundance commonly many specimens cannot be easily assigned to a species level because they possess morphological differences compared to the original descriptions. It is relevant to publish such morphological anomalies because they are frequently obviated, unpublished, and/or simply considered as non-identified specimens in published articles providing little progress in the knowledge of natural phenotypic variability of the euphausiids. We are aware that the proportion of "non identified specimens" has a high correlation with taxonomic experience of the researchers in charge of the identification of euphausiids species. However, if researchers take into account the natural morphological variability of any euphausiids species, it will allow precise identification of their distribution range with zoogeographic, ecological, and/or evolutionary significance. Future studies should compare the DNA sequences of specimens with typical and unusual morphologies to test whether they are individuals of the same species or hybrids of species with overlapping distribution range. Our specimen was preserved in formaline preventing us from performing a DNA analysis. Currently this is feasible since several research groups have developed DNA code bars for different euphausiid species world-wide (Bucklin *et al*., 2007).

ACKNOWLEDGEMENTS

We thank Edward Brinton and Annie Townsend (Scripps Institution Oceanography) for discussing the identification of this organism, however the interpretation of the identification of the euphausiid is exclusively the responsibility of the authors. JGG is supported by SNI II, EDI-IPN, and COFAA–IPN fellowships and a CONACyT sabbatical grant. We thank the valuable critic of three anonymous referees that significantly improved this manuscript. This study was partially funded by institutional projects SIP 20080490 and 20090090. The U.S. GLOBEC program (NA860P0589) provided ship time and staff assistance. This is publication 632 of the NEP-GLOBEC Program.

REFERENCES

